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ABSTRACT

Liquid-filled holes used for pressure measurements of visco-elastic liquids
give rise to systematic hole pressure 'orrors'.t Tanner and Pipkin have presented
analysis for flows of a second order fluid in which they derive a simple relation
between the first normal stress difference and the hole pressure for flow situa-
tions where Reynolds numbers are very small. Implicit in the analysis is the
assumption that the streamlines are symmetric about the hole center line. In this
paper, using a numerical solution, we investigate the relationship between the
hole pressure and the first normal stress difference for a range of Reynolds
numbers where inertial effects are not negligible. The ratio of hole pressure/first
normal stress difference is found to vary from 0.25 to 0.16 as the Reynolds number
is varied from 1 to 10. Streamline patterns are presented for Poiseuille flow of
a second order fluid over a slot cut into one wall of an otherwise straight channel.
Various geometries are considered. The results naturally include those for an in-

compressible Newtonian liquid at non-zero Reynolds numbers.

AMS (MOS) Subject Classification 70.65 Work Init No. 3 = Applications of Mathemat ic:
Key Words: Visco-elastic liquids, Hole pressure measurements, Numerical Methods

*Permanent address: Department of Camputer Science, University College of Swansea, U,y
t It has been customary in the past to apply the term hole pressure 'error' to the
quantity P _-P where Py is the pressure measured in the static liquid at the end

of a hole in a“channel wall and P, is the pressure which would be exerted on the woll
by liquid flowing in the channel if the hole were not present. The basic aim of thi.
paper is to relate this 'quantity' to material properties of the liquid, and as such
the term 'error'is misleading since tiie 'quantity' will itself be subject to ervor.

We choose, therefore, to refer to the 'hole pressure' defined as P =P . 1t wil!

be noted that the sign of the hole pressure is chosen to be pnnitivvwfur clastic
liquids.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0004.
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Significance and Explanation

i . For some time now the polymer processing industry has put considerable
effort into the design of simple, reliable instruments for measuring material

properties such as viscosity, elasticity, etc, of polymeric liquids or polymer

melts.

This report considers the theoretical background to one such instrument
which gives elasticity readings by measurement of pressure values in a liquid
when it flows through a straight channel. One wall of the channel has a slot
cut into it, and pressure is measured at the bottom of the slot and at a point
on the channel wall immediately opposite the slot. The report looks in detail
at the effect of inertial contributions to the flow and in particular shows
how inertial distortion modifies the relationship between the elasticity of the
liquid and the measured pressure values. Streamline patterns are presented

showing how much distortion one can expect for Reynolds numbers up to 25.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A COMPUTER MODEL OF HOLE-PRESSURE MEASUREMENT
IN POISEUILLE FLOW OF VISCO-ELASTIC LIQUIDS

P. Townsend
Introduction

The search for simple reliable instruments which measure material properties
of visco-elastic liquids is a never-ending one. In this paper we use a numerical
model to investigate one flow situation in which the use of liquid-filled holes
or slots for pressure measurements of flowing visco-elastic liquids gives rise
to a direct measurement of the elasticity of the liquid.

In a number of very deﬁailéa and careful experiments carried out by Lodge
and his co-workers (1, 2 and 3] it became clear that errors are produced if
pressure measurements of visco-elastic liquids are taken from transducers mounted
at the bottom of liguid-filled holes. Some work with a polyisobutylene solution
indicated an approximately linear relationship betwéen the error in the pressure
reading and the first normal stress difference. Lodge recognized that due to the
apparently systematic relationship between the 'hole pressure' and the liquid
elasticity, a basis exists for an instrument which would give direct readings of
elastic properties of a liquid from a simple shear flow. These ideas are now
embodied in the Seiscor-Lodge Stressmeter ([4].

A simple analysis due to Tanner and Pipkin [5] for Poiseuille flow of a
second order liquid over a slot showed that for very small Reynolds numbers where
inertial effects were negligible, the hole pressure was precisely one quarter of
the first normal stress difference. This result was later confirmed by Higashitani
and Pritchard [6] using a slightly different approach. Kearsley (7] derived a
similar result relating hole pressure and the second normal stress difference for

slots placed along the main flow direction. The restrictions placed on these

theoretical analyses were quite severe, however, and the very simple results
obtained unlikely to be valid when fluid inertia is non-negligible. The investi-
gation of the effects of inertia on the relationship between the hole pressure
and the first normal stress difference in a visco~elastic liquid is the aim of

this paper.
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In order to mathematically model a visco-elastic liquid, one is faced with

the very difficult question of which constitutive equations to use. Certainly

one would like to be able to model as closely as possible as many fluid proper-
ties as one can, but often the more sophisticated fluid models give rise to
partial differential equations which are either too difficult or too expensive

to solve. 1In the flow situations we shall consider, certainly our first concern
is for fluid elasticity effects, and one of the simplest models available to us

is the second order fluid. One has to be careful in interpreting results obtained
in this case for, as Pipkin [8) points out, the results are valid only if the
presence of second-order terms causes a small perturbation of Newtonian flow.

For flows which differ considerably from the Newtonian situation one may argue
that a second-order analysis gives one only preliminary insight into how Newtonian
flow will be affected by slight elasticity. 1In the present analysis it proves to
be the case that the elastic solutions obtained, except for pressure considera-
tions, differ very little from Newtonian flow.

The equations governing the flow problem, even for the Newtonian case, are
too difficult for an analytical solution, and we must turn therefore to a numerical
model. Some of the earliest work done in this area was that by Thom and Apelt [9]
who derived a perturbation solution for small Reynolds numbers for the flow of a
Newtonian liquid. They attempted to write down a simple relationship between the
hole pressure and the Reynolds number. Some comparison of their results is made
with experimental work due to Ray [10]. O'Brien [11, 12 and 13] has calculated
Stokes flow of a Newtonian liquid past slots of various geometries and in situa-
tions where the unperturbed flow in the main channel is taken to be both Couette
flow and Poiseuille flow and also some combination of the two. Results are pre-

sented indicating the dependence of streamline patterns on depth-to-length slot

ratios but unfortunately no reference is made to hole pressure measuroments.
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M nume dical solrtion of the full Navier-stokes equations for Newtonian Poiseuille

flow past a slot is presented by Schefenacker [14], although it is not clear why
inertia temms are retained for the values of the Reynolds number considered are
extromely small. The geometry used in this work is derived from extension appli=
cations and is not dirvectly relevant here. Numerical solutions for high Keynolds
number Newtonian flow have been obtained by Stevenson [15), who considers the flow
in a tube which has a circumferential wall cavity and calculates the streamlines.
Again, however, there is no reference to the hole pressure.

Hole-pressure calculations for a second-order tluid have been made by Malkus
(16], who presents results for the ratio of hole=pressure to tirst normal styress
difference as a function of depth=to-width ratio of the slot. Roth Couette and
Poiseuille flow are considered but the analysis is limited to Stokes tlow,

In a recent paper by Crochet and Rezy ([17], consideration is given to the
flow of a Maxwell-type liquid in a geametry similar to that adopted in this paper.
Only a limited number of results are presented since the probloam s essentially
only solved as one test of a new finite elament technique. The anthors oxproess:

scme doubt about certain features of their solution due to numerical datticulties

which they experienced. We shall make further refevence to this work later,




Theoretical Analysis

In this analysis we take a rectangular Cartesian coordinate system
(x,y,z) and assume that we have steady two-dimensional flow between two infinite
flat plates AH and BG , which are positioned parallel to the OXZ plane at a
distance h apart (see Figure 1). The lower plate is assumed to have cut into
it a rectangular slot CDEF parallel to the Z axis, of depth d and width b ,
and of infinite length.

If we take a velocity vector v =(u,v,0) then the equations which govern

the notion of the liquid are

. Ll
(a2, 2y o2, P Py i
; Ix dy ax dx 3y 7
) apP'
v SR PO S 4
ol i vy Rk -l - (2)
and
Ju v
Bx#ay 0 (3)

where p 1is the density of the liquid, P denotes the isotropic pressure and

P;x ' P;y and P;Y the relevant camponents of the extra stress tensor. The

boundary conditions which apply are that the velocity components are zero on
all plate surfaces, and that provided one is sufficiently far from the slot then
the flow is undisturbed Poiseuille flow. To complete the specification of the
problem we need to choose appropriate equations of state for the liquid. For
reasons given in the introduction we confine attention to the Rivlin-Ericksen

incompressible second-order fluid given by

(1) (2) (1) (1)m
' =
Pik 2ui eix + 2 a, e, + 4 ay e e (4)
(3)
ik
strain tensor introducted by Oldroyd (lslt This fluid exhibits both first and

where «o,, a and

1 2 ay are material constants and e is the jth rate of

second normal stress differences, governed by non-zero values of the parameters

(3 _
e_ik = (1/2)A

(3 where A(j) is the jth Rivlirn - I'ricksen tensor.

ik ik
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a, and Ao but is restricted to a constant viscosity ay -

The three relevant extra stress components are then given by

Y )
: RV ' R du 2 v v Ju
P' = 2a ,—-'0.‘«\_[\!-——'0\’—-“0'.‘("") 0—~(—‘-0 - )

XX 1 3x 2 \x'? axay RE X X —\—\
(%)
l— ‘ b | ¢ A
du y2 1 dv RIVE g
¢ S =
toy (3% Pl e ] '
“y Y
H v ATv 3¢ du v v 2
Po_ = du, =% Ja, [V 3 + v _,¢—~-—0t--~}0'.‘(_-]
vy 1y QL Ixdy ‘Y‘ oy ax ay ay 3
(0)
v 2 1 o 3v u 2
+ 4 e s —
‘1 [(x‘\' ] 4 ( "\x ;‘\' I 4 U
and
i } ;)
P AV . du w e dv o 3w
0 8 — o 2 — —nen
Mt hints )+ 2, [: ( G4 * axay
M
“S b |
v Qv RIEY v dv RIVERIYY
v iy, Lu) M,
2 Ix Dy 2 RESERIY ax dy |

We now take a number of steps to simplify the governing equations.,  Firsat

we introduce the following set of non-dimensional variables

X 4 u \Y
- R - N N
i g R B g T S B
(8!)
P P 3
PY = 3o Al = " \\“‘ - ~
pu " pL~ N .

where L. is some characteristic length and U is a characteristic velocity. ¥om
simplicity we choose immediately to drop the * notation although it is atill
implivd.

secondly we introduce a stream function p(x,y) such that

AL ay
u o= X and v -t . (M
Jy REN

With this definition the equation of continuity (3) is  satisfied identically.
Finally we substitute the expressions (5)=(7) for the stress campanents \‘:\

into equations (1) and (2) and eliminate the pressure. The final equations which

we then obtain are

N
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QY ¢ Y L 1 2 3y 2 oY d
< 'd—(" - — = = v L+ a ot - ,'"- — \72(', (10)
Jy 9x X Y Re 2| dy 9x = ax 3y R
where < 1is the vorticity given by
2
=V, (11)
i S !
Y is the usual Laplacian operator
2
2 - 3 i (12)
v >+ —
ax” 3y

and Re 1is a Reynolds number given by

Re = OEE - (13)
,‘tl

For L we choose the height h of the channel and for U we take the maximum
: S =2 R
value of the inlet velocity profile, i.e. U =P h /4u1 where P is the pres-
sure gradient producing the flow. Our Reynolds number becomes
=3
P h

2
4 \11

Re = 0 (14)
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Simplified Analysis of Tanner and Pipkin [5]

If one assumes that the flow is so slow that one may neglect inertia, then
the disturbance due to the slot is symmetrical about the slot centerline, and
therefore the pressure PO in a Newtonian liquid is constant along this line.
If one further assumes that the slot is sufficiently deep that there is negli-
gible motion at the bottom of it then this constant value is the pressure PH

at the bottom of the slot. Under these restrictions Tanner and Pipkin show that

for a secord order fluid the stress along the centerline is given by

ok €LY (1) ()m _ 1 (1) (1)m
Pik = PH Sik + 2“1 eik + 4a2[eim ey 2(trace(eim e )5ik)1 o
DP
(2) 0 (1) (1)m
*adde s gm st e a8 S,

1

If one now further assumes that the slot in the bottom plate is so narrow
(h/b large) that the flow near the top plate is negligibly disturbed then it is
fairly straightforward to show that the centerline thrust Pw on the top plate

is given by

1 du ,2
Pw = PH -5 (12( 3y ) . (16)
Since the first normal stress difference N1 is given by
u 2
= - = - — 7
N1 Pxx Pyy 2a2( 3y ) (17)

then from (16) and (17) we have the simple relationship between the first normal §
stress difference and the hole pressure Pw - PH namely :
P - P =}-N -8 (18)
w H 4 1
This result suggests that measurement of the hole pressure is likely to

give a direct measure of the elasticity of a liquid. This analysis has been

extended by Kearsley [7] who was able to show that for rectilinear flows along

AR ANy, YW, (E2F AT ANTRERTY A e

a slot the hole pressure is one half the second normal stress difference.

Higashitani and Pritchard [6] using a somewhat different approach have confirmed

the Tanner-Pipkin result although here again the methods used depend crucially on i




the flow patterns being symmetric about the centerline of the slot. This

is a severe restriction. 1In practical instruments one has a finite Reynolds

:
3
A
:

number and one must expect inertial effects to produce asymmetrical stream-
lines within the slot. To investigate fully the relationship between hole-
pressure and the first normal stress difference one must retain the inertia

terms in Equation (11) and derive solutions for some finite positive Reynolds

and one must turn to numerical techniques.

number. In this case, however, analytical solutions are out of the question
l
|
\




Numerical Solution

In order to solve the equations numerically it is convenient to introduce

an intermediate variable ¢ as follows. We write Equation (10) in the form

G 5 N
Re L Jy 9Ix X 9y & (19

and

(.
Jy X dy ox 9% Jy

(20)

P _3_( 3y 3t _ Eﬂ’.éf_’)
dx Jy* Jy ox X dy

£(x,y) represents a deviation from Newtonian behaviour. If ay is zero then,
from (20), ¢ is identically zero and (11) and (19) reduce to the Navier-stokes
equations.

To solve these equations together with (11), we use finite difference tech-

niques and introduce a mesh (xi,yi) (see Figure 2) defined by

2L

x, =1 Ax , L=, ..M
} . (21)

}
]

Y i Ay . j 0,1,...,N

To discretize the Laplacian operators in (11) and (19) we use standard five point

difference formulae

RO Tl = e
T i
” (6%) (ay)?

For the non-linear terms in (19) it is necessary to take special measures to insure

2A. . + A, .
ij ij=1

(22)

diagonal dominance of the difference equations. Otherwise it has been found that
the iterative scheme to be applied to solve these equations will not converge for
Reynolds numbers in excess of about unity. One technique used by Schafenacher {14]
is to introduce additional terms into the difference approximation for the x
derivative of [ , based on the previous iterative step. Another more popular
technique is to make use of so-called 'upwind' differencing. In this case, one-
sided difference approximations to the first derivatives of [ are used, the parti-

cular approximation i.e. forward or backward, being chosen according to the signs
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of the corresponding devivatives of { , to ensure diagonal dominance. 1In the
work considered here, the latter technique has proved to be a somewhat more
satisfactory method although one has to accept a loss of accuracy due to the first
order nature of the one-sided difference approximations. Greater accuracy can be
recovered however, if required, by applying a difference correction procedure
(See, for example, Dennis and Cheng [19]).

Discretization of Equation (20) presents similar diagonal dominance problems
and we must again use one-sided differences for the first derivatives of {

For boundary conditions we have that | and its first derivatives are zero
on solid boundaries, and for the inlet and outlet conditions we impose Poiseuille
flow profiles. As an alternative condition at the outlet, Y may be assumed to
be independent of x , although this slows down the convergence of the iterative
procedures. For the range of Reynolds numbers considered here, it proves adequate
to impose both inlet and outlet profiles.

The three difference equations may now be solved using successive over-
relaxation, although because of the coupled nature of the system it is necessary
to set up an inner/outer iteration procedure. Normally to start such a procedure

one makes initial guesses w(O),C(O) and E(O) for the interior of the finite

difference mesh, and then using an appropriate Taylor Series formula one constructs

from w(o) boundary values for C(O). (See, for example, Greenspan and Schultz
a 5 . 40) ; : ; (1) .
f201). fFrom ¢ one may then solve (11) to give a new approximation ¢ for
¢ . Using w(l) and E(O) one then proceeds to solve (19) for K(l), and so on.
The sequence
|(()) LU B )
x /
{0y~ / (2) =
t CRCRC ) (-A ‘)
(0 // m// i )
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of approximations (outer iterates) to each of the three variables is calculated

until the nth and (n+tl)st outer iterate agree to some predetermined tolerance.

In some cases convergence problems are experienced and it is found necessary to
apply smoothing between each outer iterate. When, for example, & new approxima-

(n+1) -(n+)
)

tion is computed, then a weighted mean of this value and the

previous value given by
+1
(RN e e (24)

J'(n+1) & 02 w(n)

e
is actually used for ¢ for the next stage of the outer iteration procedure. A
similar smoothing is applied to  and to £ .

Greenspan and Shultz [20] have suggested that it may be possible to avoid
this inner/outer iteration procedure. They solve a number of problems for the
Navier Stokes equations in which successive over-relaxation is applied simultanc-
ously to the vorticity andstream function equations. They found that this was a

much faster procedure which has the added advantage of not requiring smoothing

parameters. However, attempts to implement these ideas tor the problems con-

;
sidered here proved only to be partly successful. Simultancous iteration ot all
three equations (11), (19) and (20) did not produce a convergent solution, and
even if only the first two equations were iterated togother then a convergent

' solution is only obtained if a certain degree of smoothing is applied. In this
case, a smoothing correction is applied at the end of cach complete sweep through
the mesh of the ¢ and ¢ iterations. This method did, however, prove to be

! much faster than an inner/outer iteration scheme. | and ¢ arce now treated as

%

L a pair and combined with { in a normal inner/outer iteration as tollows

‘

é

(0) (0) PRk TR & B (2) _(2)
] ' G y X § 0 <
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In spite of the efforts set out above, a convergent solution proved difficult
to obtain for Reynolds numbers in excess of about 50. With even greater
smoothing and the use of a finer finite difference mesh it is likely that the
range of Reynolds numbers could be extended. For our purposes, we are most
interested in somewhat slower flows, and therefore no attempt was made to

extend the analysis to very high Reynolds numbers.
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The Hole Pressure

It is difficult to define precisely what we mean by the hole pressure.
Essentially if a pressure transducer is flush mounted in the bottam wall of the
slot and gives a reading PH , and a second transducer mounted directly opposite
in the top plate gives a reading Pw then the difference Pw-PH is the hole
pressure.

However difficulty arises as to how to simulate the action of the transducer
diaphragm. It was decided to compute an average force exerted by the fluid on
miu‘por(inn of the bottam wall of the slot together with the equivalent average
force exerted on a similar portion of the top plate. The range of integration
chosen in the averaging was the camplete bottam wall of the slot except for a
portion Ax at each end. This avoids difficulties at the corners C and F .

The hole pressure A P is then given by

AP = [(p - P, )dx/(b-24x) (26)
yytop plate Y¥g1ot
where Pyy 15 the normal component of the stress tensor given by
P = <P+ P' . (27)
YY Yy

The difference in the values of the fluid pressure P is given by
top plate ap

Ay dy

P - P -
top plate slot adesk

where from (2), (6) and (7)
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202 ', 2" axdy B 3x23y 2 ax ' axdy "
3 3 2 2
,X(_f-,&-+.9_9“)+92vgx+9_"9_2_\'_+3_u£2 du 3 u
2 2 2 Ix 3xd 3 ¢ 3 2
3%’y  9xdy et O WOmhy GBI dY o
du sz a3v v Bzv 83v 32u v du ’
8~ S G e oy ooy 3 8 -k 8 (28)
ay ¢ Y (\X:‘Y ay Sy 3y ay « 110%

2 2 2
dJ ) R R} J
5 7*3?’ 4 (55 v)]

+

o=

2 2 2
v 3 v v du v 3 u
o, [22 2y 1, my el ]
e [ Yy .2 (Rx Ay} (ﬂxay y2 )
Both integrations indicated above are carried out numerically using a simple
Simpson's rule algorithm.

In order to compare our result with the Tanner-Pipkin result, a final ratio

R , corrected for inertial effects, is computed, where

= - 3¢
5 (Arjsecond order fluid A‘)Newtonian)/Nl N
and where N1 is the first normal stress difference defined as
N, =P =P . (30)

| XX Yy

To compute N1 we take average values of the stress components over the region
of the top plate opposite the slot.

For the different slot geometries considered, different finite difference
meshes were constructed. 1In all cases, however, approximately 20 grid cells were
chosen to represent the y variation of solution in the main portions of the
channel away from the slot, and likewise approximately 20 grid cells werce chosen
to represent the x variation within the slot. The over-all total of grid point

was dependent on the particular geometry under consideration. All computation wa

carried out on a UNIVAC 1110 computer.
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Results

Streamlines for various flow conditions are shown in Figures 3-8. It will
be noted that in all cases a secondary flow, very much weaker than the flow in
the mainstream, is set up in the slot.

For creeping flow it is well known that the velocity field of a Newtonian
liquidis identical with that of a second order fluid. See for example Giesekus
[21], Tanner [22]. It is of interest to investigate just how much the two flow
fields differ when inertial effects are included. Since the first normal stress
difference acts like a tension along the streamlines that tends to pull the liquid
out of the slot one would expect that part of the Newtonian flow field which dips
into the slot to straighten for a second order fluid. Certainly for the range
of Reynolds numbers considered here any changes due to elasticity proved to be
in the expected direction but these changes are extremely small in magnitude.
This observation was also made by Crochet and Bezy [17]. 1In Figure 3 we have
plotted streamlines for a square slot of depth equal to the main channel height.
The full lines are for a Newtonian liquid at a Reynolds number of 25 and the
dashed lines indicate changes due to elasticity when \\,3 = -.1. It can be seen
just how little the flow field is modified by elasticity even though inertial
effects are sufficiently large to cause the overall flow pattern to deviate quite
considerably from the pattern, symmetric about the centerline, which one obtains
for creeping flow.

In ¥Yigures 4 and 5 we can see how the gradual influence of inertia is felt
as the Reynolds number increases. At a very small Reynolds number, the stream-
lines across the whole channel are modified by the presence of the slot, those
close to the slot being drawn quite deeply into the slot. As the Reynolds number
increases the streamlines straighten until only those quite close to the slot are
affected. Another noticable effect of increasing the speed of the mainstream 1is

to strengthen the secondarv flow in the slot although it always remains several

orders of magnitude weaker than the main flow.
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Streamline projections for a square slot
with h/b = 1. Re = 25

Full lines - Newtonian

Broken lines - second order fluid (a5 = -.1)
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In Figures 6-8 we have considered how the flow field is affected by changes e |

in the channel/slot geometry. Two factors are relevant here, namely the slot
depth and the slot width. Figures 6 and 7 show streamlines plotted for slots

of half and double depth respectively. A comparison of Figures 4, 6 and 7 shows
that the main flow is relatively unaffected by slot depth and that in all cases

the fluid is virtually stationary at the bottom of the slot. One might expect
therefore that hole pressures would be relatively insensitive to slot depth and

we shall investigate this point later. One consequence of changing the slot depth,

however, is a considerable change in the secondary flow, and, in particular, for

slots of double depth, one sees the onset of a second separate circulatory motion
in the slot.

Figure 8 shows streamlines for a slot of half width. Intuitively one might
expect inertial effects to be reduced for a narrower slot and the results seem to
confirm this, for the streamlines in the main channel are straighter compared
with a square slot, the overall pattern is more symmetric about the slot center-
line, and very little change is seen when the Reynolds number is increased from
10 to 25.

If we turn our attention now to the hole pressure, Figures 9 and 10 show
plots of the hole pressure as a function of distance across the slot. Further
tabulated values for representative points across the slot are calculated in Table
1. It can be seen from the figures that for the Newtonian case (dashed lines),

a positive value in the first part of the slot is to some extent cancelled by a
negative value in the remainder of the slot so that the net integrated hole pres-
sure recorded by two transducers will be very small. This ié not the case for
the elastic liquid (full lines) where the curves remain positive throughout the

slot. One would expect, therefore, the hole pressure contribution due to elas-

=2t mry

ticity to be at least an order of magnitude greater than that due to inertial

effects at the Reynolds numbers considered here.
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Streamline projections for a second order fluid (“5 = -.1)

in a deep slot with h/d = 0.5. Re = 10.
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Streamline projections for a second order fluid (ao* = -.1)

2
in a narrow slot h/b = 2.

Full lines ~ Re = 10. Broken lines -~ Re = 25.
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Although the parameter a, does not appear in the equations for the stream-
lines, it does affect pressure calculations. Throughout this work a variation of
ay within an acceptable range of values proved to have a virtually negligible
effect on the results.

In Figure 11 we have plotted the ratio R as a function of Reynolds number.
It is clear that the assumptions made in the Tanner-Pipkin theory breakdown
fairly rapidly as the Reynolds number increases above unity although there is still
a very close relationship between the hole pressure and the first normal stress
difference. Also plotted in Figure 11 are some of the results of Crochet and
Brezy. It should be said that it is not clear from their work whether they have
applied an inertial correction as we have, by subtracting off the Newtonian contri-
bution to the hole-pressure. (See Equation (29)). This correction would bring
their results a little closer to those computed here although some difference is
still apparent.

Finally we return to the question of geametrical effects in hole pressure
measurement. In Table 2 the ratio R is tabulated for four different slot
geometries. As suggested earlier, it would seem that the relationship between
hole pressure error and the first normal stress difference is relatively insensi-
tive to changes in the depth of the slot. The width of the slot is a more im-
portant factor however. A narrower slot leads to less inertial distortion of the
flow field and, as a result, a value of R closer to that predicted by the

Tanner-Pipkin theory.
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Type of Slot R

Square .166

Half depth .167

Double depth .166

Half width .186
Table 2

The ratio R tablulated as a function of

slot geometry for “3 = -.1 and Re = 10.




AN

Lonclusions

The present investigation into the determination of the first normal stress
difference of a visco-elastic liquid by the measurement of hole-pressures indi-
cates that the problem is somewhat more complex than that modelled by the
Tanner/Pipkin theory. Although elasticity is found to have very little influ-
ence on streamline patterns, even at quite appreciable Reynolds numbers, inertial

distortion of the flow field results in considerable change in the relationship

between the hole-pressure and the first normal stress difference when Re - 1 .
However, our results confirm the Tanner/Pipkin theory for Reynolds numbers
below unity.

Slot geometry is not found to be an important factor as far as slot depth
is concerned, but narrower slots are found to reduce inertial distortion of the
flow.

The results confirm that elastic and inertial contributions to the hole

pressure are additive in the sense that AP -

- AP g is propor-
clastic Newtonian e

tional to N1 for given Re and h/b .
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%\  Abstract (continued)

Reynolds numbers where inertial effects are not negligible. The ratio of hole
pressure/first normal stress difference is found to vary from 0.25 to 0.16 as the
Reynolds number is varied from 1 to 10. Streamline patterns are presented for
pPoiseuille flow of a second order fluid over a slot cut into one wall of an other-

wise straight channel. Various geometries are considered. The results naturally
include those for an incompressible Newtonian liquid at non-zero Reynolds numbers. ..

: J 5
It has been customary in the past to apply the term hole pressure '‘'error' to the

quantity PH-Pw where PH is the pressure measured in the static liquid at the end

of a hole in a channel wall and Pw is the pressure which would be exerted on the '

wall by liquid flowing in the channel if the hole were not present. The basic aim

of this paper is to relate this 'quantity' to material properties of the liquid,

and as such the term 'error' is misleading since the 'quantity’ will itself be subject
g to error. We choose, therefore, to refer to the 'hole pressure' defined as Pw—PH.

It will be noted that the sign of the hole pressure is chosen to be positive for
elastic liquids.




